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In this paper, an e!ective judgement and improvement regarding the truncation
errors of the modal synthesis method are put forward. The truncation errors
estimated are considered as &&error forces'' and their reasonable bound is de"ned to
determine the number of acceptable modes. The initial eigenvalues and
eigenvectors can be calculated from the modal synthesis method. The renewed
eigenvalues are obtained from Rayleigh quotient and the renewed eigenvectors are
obtained from an equation, which is essentially the expression for &&error forces''.
Then the renewed eigenvectors are put into Rayleigh quotient again as an iterative
process until the permitted &&error forces'' or de"nite errors of eigenvalues are
reached. As a result, the proposed approach is called an &&error force vector method''.
Obviously, the process is also an accuracy improvement for eigenpair updating.
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1. INTRODUCTION

Complete structures are frequently very complex and their major components are
often designed and produced by di!erent organizations. Thus, it may be di$cult to
assemble a "nite element model (FEM) of the entire structure in a timely manner. In
addition, the "nite element model of the entire structure might contain so many
degrees of freedom that it would be infeasible to perform a dynamic analysis based
on the "nite element equations for the complete system. For these reasons,
a powerful method has been developed which permits the structure to be
subdivided into several components, or substructures, with much of the analysis
being done on the subdivided components in order to develop an approximate
mathematical model of the full structural system [1]. Normally, this method has
come to be called the method of component modal synthesis or the modal synthesis
method (MSM). It has made rapid progress and has been programmed in most
commercial structural analysis software [2}4].
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It is understood that a so-called truncation error should be caused due to the
imperfection of preselected Ritz bases. Thus, a very important question of common
interest which comes up frequently is: how many modes are acceptable and how
do people improve the acceptable modes so as to make them as accurate as
possible? From the engineering point of view, analysts often tend to preselect the
highest possible number of Ritz bases before synthesis and extract the lowest
possible number of synthesized mode after synthesis to guarantee the accuracy of
the dynamic properties of the entire structure. Unfortunately, it is in general not an
economic way and moreover, the examination of accuracy should be completed
normally by the modal test, which is not feasible in a structural design step.

An earlier analysis for the error in synthesis techniques was done by Natke [5] in
1982. He concluded that approximate synthesis formulations could be used with
known modal submatrices and, if wanted, with supplemented arbitrary matrices.
The linearized error analysis required the calculation of one scalar equation and the
solution of one system of linear equation of reduced order for each degree of
freedom. In order to check these values, one can take bilinear forms resulting from
the quadratic eigenvalue problem with regard to the errors in a second
approximation, while using the approximate eigensolutions of the modal synthesis
or the solutions corrected by the linearized errors. If necessary, one could determine
the errors in a second approximation by solving the quadratic eigenvalue problem.
Later, many authors [6, 7] discussed the errors caused in modal synthesis of
multiple substructures with interface damping, and the truncation error reduction
by using the static parts of the truncated modes without the necessity of their being
known. Special interest was also concentrated on some special engineering
problems, for instance, the error of modal truncation in substructure testing [8, 9].
In reference [10], Curnier gave a formal proof of the exactness of all three variants
(i.e., "xed, free and loaded interface variants) in the absence of modal truncation
and studied the sensitivity of the truncation error to the di!erent interface
condition.

An &&error force vector method'' is developed in this paper to con"rm the
reliability of modes after truncation and to improve the accuracy of truncated
eigenpair problem as much as possible.

2. THEORY AND METHOD

It is assumed that the mass matrices and the sti!ness matrices of assembled
substructures are known and they may also be modi"ed by some methods of "nite
element model updating by using test modal data, if available, to improve their
accuracy. Then, a reliable mass matrix [M]and sti!ness matrix [K] for the entire
structure are assembled directly from elemental ones of the substructures. The
approximate eigenvalues and eigenvectors given by the modal synthesis method are
expressed as j

i
, Mx

i
N and the assumed exact ones (unknown) are expressed as j@

i
,

Mx@
i
N which should be obtained from the equation
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N"0 (1)

without truncation error at all.
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where Dj
i
and MDx

i
N caused by mode truncation are the error items of eigenvalue

and eigenvector respectively. Of course, Mx
i
N and Mx@

i
N possess the same dimensions

as the number of concerned d.o.f. for the structure. As shown in Figure 2, there are
big di!erences between Mx

i
N and Mx@

i
N, sometimes, for a high order mode.

Substituting equation (2) into equation (1), regardless of the high negligible
quantities, the following equation will be obtained:

([K]!j
i
[M]) Mx

i
N#([K]!j

i
[M])MDx

i
N!Dj

i
[M]Mx

i
N"M0N. (3)

Let

M f
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N,([K]!j

i
[M])Mx

i
N (4)

and de"ne it, according to the dimensional analysis, as an &&error force vector''.
Obviously, M f

i
N"0 if j

i
and Mx

i
N are the ith exact eigenvalue and eigenvector

respectively. Therefore, M f
i
N is a measurement of the mode truncation.

2.1. CRITERION OF ACCEPTABLE MODE

By computing the error force vectors M f
i
N, i"1, 2, 3,2, n, extracting the

maximum element of M f
i
N, de"ning it as max f

i,j
, i"1, 2, 3,2, n, j"1 or 2 or 3,2,

or n (i.e., the maximum element is located at the jth element of the ith error force
vector) and indicating the minimum one among max f

i,j
as a constant m, the

acceptable mode can then be determined if max f
i,j

/m)e, where e*1 is a given
limitation of error.

2.2. THE IMPROVEMENT OF ACCEPTABLE MODE

Considering equation (4), it is convenient to rewrite equation (3) as
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Furthermore, the orthonormal mass
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i.e.,
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Then, the error eigenpair Dj
i
and MDx

i
N can be obtained from equations (5) and (7)

in principle and the improved eigenpair is expressed by j@
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and Mx@
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Mx N#MDx N. However, the process of solving simultaneous non-linear equations
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(5) and (7) is tedious and time consuming. A very simple iteration approach is
proposed here to obtain a su$cient good solution of j

i
and MDx

i
N based on

Rayleigh quotient.
Step 1: Computing M f 0

i
N (superscript 0 is related to the quantities obtained by

the modal synthesis method directly, and the same below) via equation (4), we get

M f 0
i

N"([K]!j
i
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i
N, (8)

where Mx
i
N and j

i
are the initial eigenvector and eigenvalue, respectively, obtained

by the modal synthesis approach. The process then will go to step 2, if M f 0
i

N cannot
meet the criterion of acceptable modes; otherwise the process stops.

Step 2: Finding Rayleigh quotient j0
i
, we get
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Moreover
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Step 3: Obtaining MDx0
i
N from equation (5), we get
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Step 4: The "rst improvement of eigenpair, Mx1
i
N and j1

i
can then be obtained

from
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Step 5: By substituting j1
i

into equation (4), M f 1
i

N is gained from
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N. (14)

Step 6: The iteration should stop if the results are satis"ed with
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or
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where e
1

and e
2

are de"ned as error limitation according to the requirement in
practice; otherwise it will go to step 3 again and the superscript k is increased to
(k#1).
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It should be explained that:

(1) The mass and sti!ness matrices [M] and [K] of the entire structure used in the
proposed approach are only for the purpose of derivation conciseness, and
actually they can be kept in the form of a block component, and the calculation
of equations (4)}(9) can be carried out by partitioned block multiplication.

(2) The assumed exact solution j@
i
and Mx@

i
N in equation (1) are unknown and it is

unnecessary to "nd them during the operation of the presented approach.

3. NUMERICAL RESULTS AND DISCUSSIONS

To demonstrate the principle and the algorithm described in this paper, several
typical numerical examples have been cited. Here, only a 188-bar space truss
(Figure 1) is selected to show the results due to limited space. The elastic modulus
and mass density for the truss are equal to 2)1]1011 Pa and 7800 kg/m3
respectively. The entire structure is divided into two symmetric substructures. The
initial results of eigenpair j

i
and Mx

i
N are found by the constraint mode synthesis

method. In the method, the number of "xed-interface normal mode is preselected to
be 12 for each substructure. The resulting number of synthesis mode for the entire
structure is 36. For the convenience of comparison, the "rst 10 natural frequencies
obtained from the "nite element method, the modal synthesis method and the
improved method proposed in the paper are listed in Table 1. The results of the
"nite element method can be assumed as the exact ones because the mass and
the sti!ness matrices for the 188-bar truss structure are exact. It is shown that
Figure 1. 188-Bar space truss.



TABLE 1

¹he comparison of natural frequency among di+erent approaches (Hz)

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Finite element 20)866 26)424 30)968 42)759 46)622 92)956 107)25 108)47 111)35 122)99
method (without

truncation)
Modal synthesis 20)451 26)289 30)486 42)751 46)355 92)026 106)90 108)44 109)35 122)70

method
Proposed method 20)869 26)425 30)972 42)760 46)624 92)957 107)25 108)47 111)35 122)99

Figure 2. Maximum element of each error force vector. (**) synthesized results; (. . . .) improved
results after 1st iteration.
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the biggest error of natural frequency occurs at the 9th synthesized frequency.
Moreover, it is clear that perfect results can be obtained for all "rst 10 natural
frequencies after the improvement via the proposed method. Figure 2 shows the
value of the biggest element of the error force vector. A de"nite conclusion can be
drawn that as many as 28 modes can be acceptable among the 36 synthesized
frequencies. Beyond the 28th mode, an obvious bigger error force is yielded.
A comparison between the synthesized error force and the one of "rst iteration, in
Figure 2, also shows that an excellent improvement can be gained from the
proposed method. The "rst 36 natural frequencies obtained from the "nite element
method and the modal synthesis method are shown in Figure 3. In fact, all degrees
of freedom of the truss were taken and no modal truncation occurred in FEM
numerical analysis. Therefore, the eigenpairs solution from FEM with consistent
mass matrices can be considered as the exact ones for the 188-bar space truss under



Figure 3. Results from FEM and MSM. (**) "nite element results (without truncation); (. . . .)
synthesized results.

Figure 4. Value of the element of 9th error force. (**) synthesized results; (. . . .) improved results
after 1st iteration.
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the assumption of uniform element undergoing axial deformation. Actually, a real
exact solution would not be obtained unless an assumption of elastic mechanic is
adopted instead. However, it is unnecessary for the purpose of contrast. The
e!ectiveness and the reliability of the method are con"rmed again in Figure 3.
Figure 4 shows all elements of the 9th error force vector and the ones after "rst
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iteration. A distinct improvement is presented again via the iteration method. It is
worth pointing out that the modes beyond the 28th are totally unacceptable even
when using the proposed method (Figure 2). The possible explanation is that the
synthesized eigenvectors beyond the 28th have seriously drifted o! their correct
ones, so that the improvement of Rayleigh quotient will be irrational and
ine!ective. When it happens, the only way out is to increase the number of
remaining normal modes in the modal synthesis process.

4. CONCLUSIONS AND REMARKS

Several points seem reasonably clear from the amount of information gathered
from this investigation.

(1) The proposed method can be applicable to di!erent kinds of modal synthesis
methods because the deducting process has nothing to do with the property of
the modal synthesis method.

(2) The method presented here may not only serve as a criterion of acceptable
mode, but also be considered as a measure to update the synthesized modes.

(3) The proposed method can not only improve the accuracy of natural frequency
but also the accuracy of eigenvector in step 4. Therefore, it is a good approach,
in case the eigenvector improvement is required. Several numerical examples
show that a good improvement can be gained just after the "rst iteration.

(4) The proposed method, only using Rayleigh quotient and a simple iteration
process, possesses properties of simplicity and explicitness and is easy to
operate.
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